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We calculate the electron spectral functions at the edges of the Moore-Read Pfaffian and anti-Pfaffian
fractional quantum Hall states in the clean limit. We show that their qualitative differences can be probed using
momentum resolved tunneling, thus providing a method to unambiguously distinguish which one is realized in
the fractional quantum Hall state observed at filling factor �=5 /2. We further argue that edge reconstruction,
which may be less important in the first excited Landau level �LL� than in the lowest LL, can also be detected
this way if present.
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I. INTRODUCTION

Fractional quantum Hall �FQH� systems represent one of
the richest and most fascinating classes of interacting elec-
tron systems known to date. Possible realizations may in-
clude states supporting non-Abelian statistics, which have
been proposed to allow fault-tolerant “topological” quantum
computing.1,2 However, in general the striking transport
properties that gave the FQH effect its name are not suffi-
cient to discriminate between various classes of different
states that may occur at a given Landau level �LL� filling
factor �. The most hopeful experimental candidate system
for a non-Abelian state is the FQH state at �=5 /2.3 Possible
non-Abelian states explaining the �=5 /2 plateau include the
Moore-Read “Pfaffian” �Pf�4 and its particle-hole conjugate
counterpart, the “anti-Pfaffian” �AP�.5,6 These two states
have very closely related bulk properties and most funda-
mentally differ through the physics of their edge states. Re-
cent experiments involving quasiparticle tunneling between
opposite edges across constrictions �or point contacts� have
probed quasiparticle charge7,8 and may have revealed signa-
tures of non-Abelian statistics.9 They do not, however, allow
for a clear distinction between the Pf and AP states; in fact,
only the experiment in Ref. 8 is sensitive to the difference
between these two states, which shows up as a quantitative
difference in certain power-law exponents. In this Rapid
Communication we show that momentum resolved electron
tunneling �MRT� through a clean and extended junction10–13

into the edge of the �=5 /2 state gives rise to qualitative
differences in the signals and may thus be the most promis-
ing diagnostic tool to distinguish these two states from one
another, as well as from other possible states.

II. EXPERIMENTAL SETUP AND PHYSICAL
ASSUMPTIONS

A possible experimental setup is depicted in Fig. 1, which
is currently being pursued experimentally.14 The tunneling is
between the �=1 /2 edge in the second LL and the edge of a
Hall droplet in a vertically separated layer, which we assume
to be in a �=1 state. We will consider both copropagation
and counterpropagation lead geometries, i.e., the �=1 edge
state propagates along the same or opposite direction com-

pared to that of the �=5 /2 edge state. Note that the �=1 /2
edge of the second LL will be contained well inside the edge
of the filled lowest LL of the �=5 /2 droplet �see Fig. 1�.
While this may complicate tunneling into this edge with
other settings, in that of Fig. 1 this problem is circumvented
by positioning a narrow �=1 strip on top of the �=1 /2 edge.
This allows tunneling into both a copropagating as well as a
counterpropagating �=1 edge �see caption�.

The Pfaffian edge theory consists of the sum of a massless
chiral fermion and massless chiral boson Lagrangian density
with copropagating velocities, LPf�� ,��=L�+L�, where

L� = i���t + vn�x�� , �1a�

L� =
1

2�
�x���t + vc�x�� , �1b�

vn and vc are the neutral and the charged mode velocities,
respectively. Here, vn�vc is expected due to the fact that vc
is associated with the larger Coulomb energy scale, in agree-
ment with the numerics in Refs. 15 and 16. In presenting the
theory of the AP edge, we will follow Ref. 5, with the essen-
tial difference that we assume disorder to be so weak that
momentum remains a good quantum number at the length
and energy scales relevant to the experiment and do not in-
clude it. On the other hand, disorder has been a key ingredi-

FIG. 1. �Color online� Schematic setup for momentum resolved
tunneling. A �=1 /2 edge in the second Landau level is contained
within the outer �=2 edge of the filled lowest Landau level. Tun-
neling takes place between the �=1 /2 edge and a lead, consisting
of the edge of a narrow �=1 strip. By adjusting the position of the
strip and/or the in-plane magnetic field B�, tunneling into a copropa-
gating �front� or a counterpropagating �back� �=1 edge may be
realized.
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ent leading to the conclusion of universal scaling dimensions
in Ref. 5. Here we will argue that the same universal expo-
nents are also obtained, to very good approximation, based
on the separation of energy scales between charged and neu-
tral modes. In the spirit in Refs. 5 and 6, we thus write the
theory of the AP edge as the sum of the Pfaffian edge
Lagrangian with all mode velocities reversed and that of a
�=1 edge, together with a density-density interaction be-
tween the two charge modes,

LAP =
1

4�
�x�1��t + v1�x��1 + LPf��,�2� +

v12

2�
�x�1�x�2.

�2�

Here, the field �1 describes the �=1 edge and LPf denotes
the Pfaffian Lagrangian discussed above with the formal sub-
stitution �x→−�x. In Eq. �2�, the velocity parameters and the
interaction v12 are independent, but their relative orders of
magnitude are set by the dominance of the Coulomb energy
scale, as will become apparent shortly below. To see this, we
carry out the charge/neutral decomposition in Ref. 5 via ��

=�1−�2, ��=�1−2�2. The physical significance of �� is
that �tot=−�x�� /2� is the total charge density at the edge,
while �� is the linear combination of �1 and �2 that com-
mutes with �tot. In terms of the new fields,

LAP =
1

2�
�x����t + v��x��� +

1

4�
�x���− �t + v��x���

+
v��

2�
�x���x�� + i���t − vn�x�� , �3�

where v�, v�, and v�� are simple linear combinations of v1,
vc, and v12. In Eq. �3�, however, the large Coulomb energy
scale should enter only the coupling of the total charge den-
sity with itself, i.e., v�. All other coupling constants are in-
dependent of this energy scale and are expected to be much
smaller, i.e., v��v���v�. Under these circumstances, the
intermode coupling constant v�� has a very small effect of
order v�� /v� on the scaling dimensions of operators. To a
good approximation, we may thus set v���0, which allows
us to read the scaling dimensions of various operators di-
rectly off Eq. �3�. Here we are only interested in the most
relevant operators that have the quantum numbers of the
electron operator. These operators and their scaling dimen-
sion are then identical to those identified in Refs. 5 and 6. We
emphasize, however, that the argument given here relies on
the dominance of Coulomb interactions only and does not
invoke disorder, which played a central role in Ref. 5. As a
result, the edge theory �Eq. �3�� retains two distinct counter-
propagating neutral mode velocities, vn and v�.

III. ELECTRON OPERATORS AND SPECTRAL
FUNCTIONS

An electron operator of minimal scaling dimension 3/2 is
given by �el,1�x�=��x�exp�−2i���x�� for both the AP and Pf
edge theories �we identify ���� in the latter�. In the Pf
case, this is the unique leading electron operator, whereas
there are two more such operators of equal scaling dimension

in the AP case. These may be taken to be �el,2,3�x�
=exp��i���x��exp�−2i���x��. The leading term in the elec-
tron operator at the AP edge is thus a superposition of the
operators �el,j, j=1,2 ,3. However, all cross correlations be-
tween different �el,j vanish, and the electron Green’s function
is of the form G�t ,x�	−i
 j aj��el,j

† �t ,x��el,j�0,0��. We will
discuss the contributions to the electron spectral function of
these correlators separately. Their real space structure is
given by

��el,j
† �t,x��el,j�0,0��

	
i sgn�un�

x − unt + i0+ sgn�unt�
− 1

�x − uct + i0+ sgn�t��2 . �4�

In the above, uc equals vc in the Pf case and v� in the AP
case, whereas un equals vn in the Pf case and −vn in the AP
case for j=1 and −v� for j=2,3. From Eq. �4� one can
obtain the Fourier transform G�
 ,q� of the electron
Green’s function, and the spectral function A�
 ,q�
=−�1 /��Im G�
 ,q�sgn�
�. More directly, A�
 ,q� can be
obtained from the convolution method detailed in Ref. 17.
For each of the leading contributions shown in Eq. �4�, the
result Aj�
 ,q� is given by

Aj�
,q� 	 ��un�
 − qun��quc − 
��

 − qun
�uc − un�2 �5�

with � as the Heaviside step function.
The results are plotted in Fig. 2 for both the Pf �un�0�

and the AP �un0� cases. The presence or lack of a coun-
terpropagating mode is clearly visible. This leads to different
kinematic constraints on the spectral weight. In the Pfaffian
copropagating case, for any given q we can make excitations
only within a finite 
 range between unq and ucq. In contrast,
in the AP case, the presence of two mutually counterpropa-
gating modes relevant to each Aj excludes the spectral weight
from a finite range of frequencies at each q.

IV. MRT CONDUCTANCE

We calculate the tunneling current in linear response us-
ing the theory discussed in Ref. 17,

FIG. 2. �Color online� The electron spectral function in the low-
energy long-wavelength limit for the �a� Pfaffian and �b� anti-
Pfaffian edges. q is measured relative to the Fermi wave vector at
the edge for a specific electron operator. Dashed lines indicate 

=ucq and 
=unq. In �b�, only the contribution to the spectral func-
tion due to one of the three leading electron operators at the anti-
Pfaffian edge is shown �see text�.
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Ij�V,�q� 	� d
1d
2dq1dq2AL�
1,q1�Aj�
2,q2�

��f�
1� − f�
2����eV + 
1 − 
2����q + q1 − q2� .

�6�

Here AL�
 ,q� is the lead spectral function. We take
AL�
 ,q�=��
−uLq� corresponding to a �=1 edge, with
uL�0 for the copropagating lead geometry and uL0 for the
counterpropagating lead geometry �cf. Fig. 1�, though other
types of leads may be considered. f�
� is the
Fermi-distribution function, where we assume zero
temperature in the following. V is the applied voltage and
�q=ed�B� −Bj� /�c is the change in the electron wave-vector
relative to the Fermi wave vector, where B� is the in-plane
magnetic field, Bj is an offset accounting for different Fermi
wave vectors in the lead and the Pf or AP edge, and d is the
distance between the two layers. Bj is expected to depend on
j as we will further discuss below. This may lead to
additional distinctive features between the Pf and the AP
cases since the total current is the superposition
I�V ,B��=
 j ajIj�V ,�q� in the latter. From Eq. �6�, it is
straightforward to evaluate Ij�V ,�q� for various cases. We
present a general result that is valid for any signs of un and
uL and only assumes that un is smaller than the “charged”
velocity parameters uc and uL. We consider both ucuL and
uc�uL, which lead to qualitative differences in the copropa-
gating lead case. The general result can be glued together
from three functions, defined as

IA =
sgn�uL��eV − �quL�2

�uL − un��uc − uL�2 , IB =
sgn�uL��eV − �qun�2

�uL − un��uc − un�2 ,

IC =
sgn�uL��eV − �quc�
�uc − un�2�uc − uL�2

��eV�un + uL − 2uc� + �q�unuc + uLuc − 2unuL�� .

�7�

For each of these three expressions, we define an associated
interval in �q. Let JAC be the interval between eV /uL and
eV /uc and JB be the interval between eV /un and either eV /uL
or eV /uc, whichever is closer to eV /un. Obviously, JAC and
JB share a common boundary point and are otherwise dis-
joint. Equation �7� was written down with the tacit under-
standing that the expressions for IA and IC are only valid
when �q�JAC and that for IB is only valid for �q�JB.
Outside these intervals, the associated currents are defined to
be zero. For V�0 and with these conventions, we find
Ij = IA+ IB for uL�uL−uc�un�0 and Ij = IC+ IB otherwise. The
case V0 is obtained via Ij�V ,�q�=−Ij�−V ,−�q�.

V. RESULTS AND DISCUSSION

Figure 3 shows our results for dIj /dV for six cases of
interest, corresponding to the Pf and AP edge states, for co-
propagating and counterpropagating lead geometries, and for
both signs of uL−uc in the former case. The most striking
difference between the Pf and the AP cases is apparent in the

copropagating lead geometry. Here, a positive V requires a
positive �q for a current to flow in the Pf case. In contrast, a
current will always flow for a range of positive and negative
values of �q in the AP case. These observations are direct
consequences of the kinematic constraints on the spectral
function discussed above. Furthermore, it is only in the Pf
copropagating cases that dI /dV becomes negative. However,
even for a counterpropagating lead, the Pf and the AP cases
are clearly distinguishable. The smallest mode velocity
which is visible in the graph can always be identified with un,
and its sign distinguishes the Pf from the AP case. Also note
that in Fig. 3�f� �AP, counterpropagating�, dI /dV has no dis-
continuity within the region of nonzero current but does so at

FIG. 3. �Color online� dI /dV as a function of applied voltage V
and wave-number change �q �all units are arbitrary�. �q is related
to the in-plane magnetic field B� via �q=ed�B� −Bj� /�c �see text�.
The first column shows results for the Pfaffian case �un�0�; the
second column applies to the anti-Pfaffian case �un0�. The last
row assumes tunneling into a counterpropagating �=1 lead edge
�uL0�; the first two rows assume a copropagating lead edge
�uL�0�, with uL greater than �less than� uc in the first �second� row.
Dashed lines correspond to eV=unq, eV=ucq, and eV=uLq, respec-
tively, and mark the boundaries of different regions across which
dI /dV and/or its derivatives have discontinuities. For clarity, we
have chosen un=0.1 always, and uc=0.5, uL=1.3 for the first and
last rows, whereas uc=1.3 and uL=0.5 in the second row. The signs
of un and uL are varied as appropriate to each case. Distinctive
features discriminating between the Pfaffian and anti-Pfaffian cases
are clearly visible. In addition, the dI /dV plots shown here for the
anti-Pfaffian edge take into account only one of the three leading
electron operators for simplicity. In the full dI /dV signal, each of
these operators makes a contribution of the kind shown above but
possibly with different horizontal offsets and with only two of the
three neutral mode velocities identical �see text�.
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one of its boundaries. In contrast, the case in Fig. 3�e� �Pf,
counterpropagating� shows a dI /dV discontinuity within the
region of nonzero current but not at its boundaries. Further-
more, even in the AP counterpropagating case �Fig. 3�f�� a
discontinuity in d2I /dV2 will clearly distinguish between two
different regions �corresponding to Ij = IB and Ij = IC�. The
separating line between these two regions has a slope, uc,
which differs in sign from the slope uL of a similar separating
line in the Pf counterpropagating case �Fig. 3�e��. More gen-
erally, Figs. 3�b�, 3�c�, and 3�f� have no discontinuity in
dI /dV within the region of nonzero current but have a dis-
continuity at one of its boundaries, in contrast to the cases in
Figs. 3�a�, 3�d�, and 3�e�. Note that in Fig. 3�b� �Pf, copropa-
gating, uc�uL�, dI /dV smoothly goes through zero within
the region where Ij = IC. In any case, discontinuities in either
dI /dV or d2I /dV2 allow for a direct measurement of the edge
mode velocities. These findings imply that under all circum-
stances considered here, the MRT conductance clearly distin-
guishes the Pf edge from the AP edge. This becomes even
more pronounced when one takes into account that in the AP
case, the MRT current is a superposition of the form
I�V ,B��=
 j ajIj�V ,�q�. As discussed above, the contribu-
tions Ij do not all feature the same neutral mode velocity un
in the clean case considered here. Even more importantly, the
offset Bj entering the definition of �q is expected to depend
on j as well. This is so because the three operators �el,j will
in general carry different momenta. To see this, we may re-
interpret these operators in terms of processes taking place at
the original �=1 edge and particle-hole conjugated Pfaffian
�=1 /2 edge present in Eq. �2�. It is easy to see that, e.g.,
�el,1 creates one electron at the �=1 /2 edge while destroying
two electrons at the �=1 edge. Similarly, �el,2 simply de-
stroys one electron at the �=1 edge. Hence, if different
Fermi momenta are associated with the �=1 and �=1 /2
components of the edge, all three operators �el,j carry differ-
ent momenta. In the AP case, one thus expects to measure an
MRT conductance which is the superposition of three graphs
taken from the appropriate row in the second column of Fig.

3, with three different horizontal offsets and with two differ-
ent neutral mode velocities un.

We remark that the above results could in principle be
affected by edge reconstruction. However, we expect these
effects to be considerably weaker at the second LL edge of
interest here. Since this edge is well contained inside the
physical edge of the sample, fringe field effects, which are
usually associated with edge reconstruction,16 will be weak.
Hence we argue that a picture based on an unreconstructed
�=1 /2 edge may apply. If edge reconstruction indeed oc-
curs, additional edge modes will result and they can in prin-
ciple also be detected using the setup discussed here; see
Ref. 17 for a discussion of this point in the �simpler� context
of a �=1 /3 edge, and a detailed study will be left for future
work �see also Ref. 18�. We note that we have considered the
setup of Fig. 1 both for its simplicity and experimental
relevance;14 in principle other setups like those in Refs.
10–13 can also be used to study the 5/2 edge. Finally, we
mention a recent alternative proposal to distinguish the Pf
edge from the nonequilibrated AP edge, involving simple
two-terminal measurements.19 We caution, however, that the
presence of the contacts in such experiments will almost cer-
tainly lead to disorder and equilibration among the edge
channels at least near the contacts. As a result the predicted
two-terminal conductance for a scenario based on nonequili-
brated edges may never be observed. On the other hand, the
�momentum conserving� tunneling processes we consider oc-
cur away from these contacts and thus do not suffer from the
contact-induced disorder. We are thus hopeful that MRT will
prove a useful tool to shed further light on the �=5 /2 quan-
tum Hall state in the future.
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